3.665 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=302 \[ -\frac {2 b \left (5 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 a^2-2 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {4 b \left (3 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

-2/3*b*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)-2/3*b*(5*a^2-b^2)*sin(d*x+c)*sec(d*x+c)^
(1/2)/a/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)+2/3*(3*a^2-2*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^2/(a^
2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+4/3*b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(si
n(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^2/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1
/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.64, antiderivative size = 302, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3843, 4100, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac {2 b \left (5 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 a^2-2 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {4 b \left (3 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(3*a^2 - 2*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]]
)/(3*a^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (4*b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sq
rt[a + b*Sec[c + d*x]])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (2*b*S
qrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (2*b*(5*a^2 - b^2)*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3843

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*d*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m +
 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*Csc
[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && Lt
Q[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^{5/2}} \, dx &=-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {-\frac {b}{2}-\frac {3}{2} a \sec (c+d x)+b \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{2} b \left (3 a^2-b^2\right )+\frac {1}{4} a \left (3 a^2+b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (3 a^2-2 b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}+\frac {\left (2 b \left (3 a^2-b^2\right )\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2}\\ &=-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^2-2 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 b \left (3 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^2-2 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 b \left (3 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {2 \left (3 a^2-2 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {4 b \left (3 a^2-b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.31, size = 196, normalized size = 0.65 \[ \frac {2 \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+b) \left (\frac {a b \sin (c+d x) \left (\left (2 a b^2-6 a^3\right ) \cos (c+d x)-5 a^2 b+b^3\right )}{\left (a^2-b^2\right )^2}+\frac {\left (\frac {a \cos (c+d x)+b}{a+b}\right )^{3/2} \left (\left (6 a^2 b-2 b^3\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\left (3 a^3-3 a^2 b-2 a b^2+2 b^3\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )}{(a-b)^2}\right )}{3 a^2 d (a+b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)*((((b + a*Cos[c + d*x])/(a + b))^(3/2)*((6*a^2*b - 2*b^3)*EllipticE
[(c + d*x)/2, (2*a)/(a + b)] + (3*a^3 - 3*a^2*b - 2*a*b^2 + 2*b^3)*EllipticF[(c + d*x)/2, (2*a)/(a + b)]))/(a
- b)^2 + (a*b*(-5*a^2*b + b^3 + (-6*a^3 + 2*a*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))/(3*a^2*d*(a + b
*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [F]  time = 1.86, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*se
c(d*x + c) + a^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 1.52, size = 2070, normalized size = 6.85 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-2/3/d*(-2*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellipt
icE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4+3*cos(d*x+c)*sin(d*x+c)*EllipticF
((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^4-3*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/
(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b-2*c
os(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2+((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2*b^
2+5*a^2*b^2*((a-b)/(a+b))^(1/2)-a*b^3*((a-b)/(a+b))^(1/2)-6*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b+3*cos(d*x+c
)^2*((a-b)/(a+b))^(1/2)*a*b^3+6*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b-6*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^2-
2*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3+2*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^4-2*EllipticE((-1+cos(d*x+c))*((a-b)
/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x
+c)))^(1/2)*sin(d*x+c)+3*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c
)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4-2*b^4*((a-b)/(a+b
))^(1/2)+3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^
(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)-2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+6*EllipticE((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+c
os(d*x+c)))^(1/2)*sin(d*x+c)+6*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*
((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*sin(d*x+c)*a^3*b-2*cos(d*x
+c)^2*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b^3-5*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+co
s(d*x+c)))^(1/2)*a^2*b^2-2*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b^3+6*cos(d*x+c)*si
n(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b+6*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b)
)^(1/2))*a^2*b^2-2*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2
)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3)*cos(d*x+c)*(1/cos(d*x+
c))^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)/(b+a*cos(d*x+c))^2/(a-b)/(a+b)^2/((a-b)/(a+b))^(1/2)/
a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*sec(c + d*x))**(5/2), x)

________________________________________________________________________________________